Izmir Institute of Technology
Uzun İnce Bir Yolda Analitik Kimya (Analytical Chemistry On A Road Long and Narrow)

İzmir Yüksek Teknoloji Enstitüsü (İzmir Institute of Technology)

Analitik kimyanın aktif çalışma alanlarından biri, çeşitli sular, biyolojik sıvılar ve diğer numunelerde çok sayıda ve düşük derişimlerdeki analitlerin belirlenmesi üzerinedir. Bu çalışmalar genellikle mevcut bir metodun iyileştirilmesi veya tamamen yeni bir metodoloji önerilmesi şeklinde ortaya çıkar. Her iki strateji de geçerlidir; elde edilen kazanım bazı çalışma alanlarının evrilmesine ve yeni çalışma alanlarının doğmasına yol açar. Son zamanlarda çok sayıda analitik kimyacı, daha küçük hacimde numune ve reaktife ihtiyaç duyan, daha kısa sürede sonuç veren ve daha az zararlı kimyasal maddeler kullanan yöntemlere yönelmiştir. Artık dakikalar içinde analiz süresi, mikrolitre ve daha küçük numune/reaktif hacimleri, minyatürleşen ve otomatik hale getirilen ölçüm cihazları söz konusudur.

Konuşma, İzmir Yüksek Teknoloji Enstitüsü Kimya Bölümündeki araştırma laboratuvarımızda, atomik/moleküler spektrometri ve kromatografik tekniklerle olan çalışmalarımızdan yola çıkarak, çeşitli analitlerin tayini için sentezlediğimiz yeni ve fonksiyonel malzemeler ve bunların uygulamaları hakkında olacaktır. Anılan teknikler ve bu tekniklerle tayin öncesi başvurulan ön-hazırlık yöntemleri (katı faz ekstraksiyon, katı faz mikroekstraksiyon vb.) hakkında kısa bilgi verilecek ve oluşan bilgi birikiminin nispeten yeni tekniklere (örn. kapiler elektrokromatografi) aktarılmasından bahsedilecektir.

One of the active research fields of analytical chemistry is about the determination of a high number of analytes at very low concentrations in a variety of waters, biological fluids and other samples. These studies usually appear as an improvement of an existing method or as a proposal of a completely new methodology. Both strategies are acceptable; any achievement leads to the evolution of some and the emergence of new research fields. In recent years, many analytical chemists have been working on the methods which requirethe use of less sample and reagent volumes, have shorter analysis times, and use less amounts of toxic chemicals. Now, analysis times within minutes, sample/reagent volumes in the order of microliter or less, and miniaturized and automated analytical instruments are in question.

Stemming from the studies on atomic/molecular spectrometry and chromatographic techniques in our research laboratory in the Department of Chemistry, İzmir Institute of Technology, the talk will be about the synthesis and applications of new and functional materials for the determination of a variety of analytes. It will start with a brief introduction to the techniques mentioned above and pre-sampling strategies (solid phase extraction, solid phase microextraction, etc.) and then continue with the application of the competence acquired to the relatively new techniques (e.g., capillary electrochromatography).

Konya Food and Agriculture University
Green Extraction of Bioactive Compounds

Konya Food and Agriculture University, Faculty of Engineering and Architecture, Department of Bioengineering, 42080 Konya/Turkey *E-mail: munevver.sokmen@gidatarim.edu.tr

Keywords: Green extraction, bioactive compounds

Bioactive compounds are generally extracted from natural sources and they have beneficial effects on human health. Extraction processes for these compounds depend on several factors.Extraction technique, the raw material, and the extracting solvent are important parameters. Conventional techniques generally require large amounts of organic solvents, high energy expenditure, and are time consuming. Therefore, new technologies that are referred to as clean or “green” technologies arehot research topics in the multidisciplinary area of applied chemistry, biology, food and technology. These can reduce or eliminate the use of toxic solvents, and thus preserve the natural environment and its resources.

The design of green and sustainable extraction methods of natural products has six main principles.

Principle 1: Innovation by selection of varieties and use of renewable plant resources.

Principle 2: Use of alternative solvents and principally water or agro-solvents.

Principle 3: Reduce energy consumption by energy recovery and using innovative technologies.

Principle 4: Production of co-products instead of waste to include the bio- and agro-refining industry.

Principle 5: Reduce unit operations and favor safe, robust and controlled processes.

Principle 6: Aim for a non denatured and biodegradable extract without contaminants.

This presentation describe a multifaceted strategy to apply this concept at research and industrial level as well as innovative technologies, process intensification, agro-solvents and energy saving. Some examples of the application of these technologies will be discussed.


1. FaridChemat, MarylineAbertVian and Giancarlo Cravotto, Green Extraction of Natural Products: Concept and Principles, Int. J. Mol. Sci. (2012)13 8615-8627.

2. Marcela BrombergerSoquetta, Lisiane de Marsillac Terra, Caroline PeixotoBastos,Green technologies for the extraction of bioactive compounds in fruits and vegetables,CyTA – J. Food (2018) 16 400-412.

Hacettepe University

Arven Pharmaceuticals Inc.
Importance of Process Chromatography Applications in Biopharmaceutical Industry


Arven Pharmaceuticals. Arven Ar-Ge Merkezi Selimpaşa Mahallesi Atatürk Caddesi Hayalet Sokak No:23 34590, Silivri - İstanbul *E-mail: iremyenice@arvenilac.com.tr

Keywords: Biotechnological drug product, process chromatography, impurity profile, biosimilar, biopharmaceutical industry,

Process chromatography is defined as one of the important parts of the production of a biotechnological drug. Ion exchange, size exclusion, reverse phase, hydrophobic interaction, affinity or multimodal chromatographic processes are used to capture and polishing steps in biopharmaceutical industry. There are a lot of ongoing projects to replace chromatographic stages to other strategies; however they are not precise, selective, repetitive and scalable for now.

Process chromatography changed and developed until today and includes wide variety of applications. Small recombinant protein molecules, enzymes and antibodies are produced in biopharmaceutical industry. The developed purification methods in laboratory scales should be adaptable to larger scales for production with the same quality attributes. This may also be possible by suitable optimized chromatography methods. At this stage, chromatography media screens, design of experiment studies and design spaces are important to reach the same quality.

Each drug has its unique impurity profile. Regulatory agencies demand distinct quality requirements for each drug product. Biopharmaceutical industry subjects to a variety of regulations. To comply with these rules, selection of the right chromatography model has the utmost importance to control the impurity profile. Selecting the appropriate model affects the impurity profile, recovery and productivity of the purification stages. The improvements in chromatography technology such as resin matrix, ligand chemistry developments, help to find out the right choice to reduce process steps. Beside impurity profile endotoxins and viruses can be reduced by chromatographic methods. For instance, in monoclonal antibodies cell line related viruses can be seen in the drug substances after upstream process. Virus removal is mandatory for the safety of the drug product. At this stage, affinity and anion exchange chromatography steps have a good log reduction values and can be validated for virus removal.

Process chromatography steps have an important role for process yield and quality of the product and that’s why they are essential for the calculation of production cost of the biopharmaceutical products including biosimilars as well. Presentation will focus on importance of the process chromatography applications in biopharmaceutical industry.


1. ICH Q5A (R1), 1999, Viral Safety Evaluation of Biotechnology Products Derived From Cell Lines of Human or Animal Origin.

2. ICH Q6B, 1999, Test Procedures and Acceptance Criteria for Biotechnological/Biological Products.

Yıldız Technical University
Kromatografik sistemlerde yüksek doğruluk ve duyarlılığa yönelik stratejiler (Strategies to obtain high accuracy and sensitivity in chromatographic systems)

Yıldız Technical University, Faculty of Art and Science, Chemistry Department, 34210, Istanbul, Turkey

E-mail: bsezgin23@yahoo.com

The different principles of chromatography are utilized by scientists for the separation of a wide range of organic/inorganicanalytes including those with closely related molecular structures. Mass spectrometry (MS) is a very powerful detection technique which enables separation of compounds occurring at the same retention time but have different mass to charge ratios. The operating modes of the MS detector also allows selective and specific analyte determinations. In order to get high accuracy and precision in chromatographic systems, different extraction/preconcentration strategies have been also used in literature. Microextraction methods separate analytes from sample matrices into suitable forms for instruments, and augment the sensitivity of the detector by preconcentrating analytes into measurable quantities. Some novel microextraction methods include switchable solvent liquid phase microextraction, the binary forms of dispersive liquid-liquid microextraction and coated magnetic nanoparticles micro-solid phase extraction. Environmental and biological samples generally have complex matrices that influence the trueness of analyte quantification. Matrix matching and standard addition are two quantification methods that are used to overcome matrix effects for accurate quantification. Internal standards are used to overcome errors that may arise from experimental procedures and instrumental measurements. A more superior technique used to obtain highly accurate and precise analysis results is isotope dilution mass spectrometry (IDMS). The IDMS technique involves spiking a sample with an isotopically labelled standard to determine the unknown concentration of its analogue analyte. IDMS calibration strategies include single, double, triple and quadruple IDMS, and a recent strategy which accounts for complex matrix effects called standard addition isotope dilution mass spectrometry.

Keywords:Chromatography, microextraction, isotope dilution, internal standards

Ankara University
Kromatografik sistemlerde kullanılan elektrokimyasal dedektörler ve analizler

Elektrokimyasal Dedektörler: Kromatografik İlaç Analizlerindeki Yeri ve Önemi

Ankara Üniversitesi Eczacılık Fakültesi, Analitik Kimya Anabilim Dalı, Ankara

E-mail: buslu@pharmacy.ankara.edu.tr

Anahtar kelimeler: kromatografi,elektrokimyasal dedektör, ilaç analizi

Yüksek performanslı sıvı kromatografisi yönteminde kolonda ayrılan maddeleri tanıyabilmek için pek çok farklı tipte dedektörler kullanılmaktadır. Bunlardan biri olan elektrokimyasal dedektörler, optik dedektörler kadar yaygın olmasada duyarlık, seçicilik ve kullanım kolaylığı gibi pek çok avantaja sahiptir.

Elektroaktif maddelerin tanınmasında ve duyarlı bir şekilde tayin edilmesinde kullanılan elektrokimyasal dedektörler genel olarak; kulometrik,potansiyometrik, voltametrik ve amperometrik olarak sınıflandırılabilirler.

Yüksek performanslı sıvı kromatografisinin elektrokimyasal dedektör ile kombinasyonu,ilaç etken maddelerinin biyolojik numunelerden ve farmasötik dozaj şekillerinden daha duyarlı ve seçici tayin edilmesine olanak sağlar. Ayrıca, yaklaşık 10-11 g.mL-1 düzeyinde tayin yapmaya olanak tanır, matriks etkisinin kolaylıkla elimine edilmesini sağlar ve çok düşük hacimde çalışmaya imkan verir. Yöntem; sınırlı kullanım alanının olması, elektrot yüzeyinin zehirlenerek etkisiz hale gelmesi ve bu yöntemi kullanmak için iyi bir elektrokimya bilgisinin gerekliliği gibi dezavantajlarına rağmen ilaç analizi dışında çevre, endüstri ve klinik alanlar dahil olmak üzere pek çok alanda başarıyla kullanılabilmektedir. Elektrokimyasal dedektörlüyüksek performanslı sıvı kromatografisi ile ilgili yeni gelişmelerle dezavantajlarının en aza indirilmesi sayesinde bu yöntem yakın gelecekte klinik uygulamalarda rutin olarak kullanılır hale gelebilecektir.

Bu çalışmada, elektrokimyasal dedektör kullanılanyüksek performanslı sıvı kromatografisi yöntemi ile ilgili teorikve pratik bilgiler verilecek, bu yöntemin ilaç analizlerindeki kullanımları ve önemine ait detaylar anlatılacaktır.

Hacettepe University
Kromatografi ve ötesi

Hacettepe Üniversitesi, Kimya Bölümü, 06800 Ankara-TÜRKİYE


Bu sunumda kromatografi de yaşanan gelişmeler ışığında günümüzde verimli, doğru, duyarlı, tekrarlanabilir ve çok düşük derişimlerin ölçülebildiği teknikler vurgulanarak elde edilen sonuçlar tartışılacaktır. Ayrıca kromatografi-spektroskopi bağlılığı örnekler ile çarpıcı bir şekilde sunulacaktır. Bunların yanı sıra doğal örneklerin kromatografı kullanılmadan analiz edilebilmesinin mümkün olup olmadığı da bu sunumda örnekler verilerek yorumlanacaktır.

ICCON Validasyon Danışmanlık
Bilgisayarlı Analitik sitemlerin validasyonu

ComputurizedSystemValidation inAccreditetedLaboratory

Iccon Danışmanlık

Computerizedsystemsuch as HPLC arewidelyusedduringdevelopmentandmanufacturing of drugsandmedicaldevices. Properfunctioningandperformance of softwareandcomputersystemsplay a major role in obtainingconsistency, reliabilityandaccuracy of data. Therefore, computersystemvalidation (CSV) should be part of regulatedlaboratorypractice.

CSV Requirements :

• restricting security configuration settings for system administrators to independentpersons, where technically feasible;

• disabling configuration settings that allow overwriting and reprocessing of datawithout traceability;

• disabling use of “hidden fields” and the ability to delete data and the ability toobscure data with data annotation tools;

• restricting access to time/date stamps;

A computerizedsystemconsist of thehardware, software, and network components, together with the controlled functionandassociatedwithdocumentation.

Computerizedsystemvalidation plan consist of; whatactivitiesarerequired, who is responsible how theywill be performedand, whattheiroutputwill be, whattherequirementsareforacceptance, how compliancewill be maintainedforthelifetime of thesystem.

Computersystemvalidationis theprocess of documentingthat a computersystemmeets a set of definedsystemrequirements.

Inthisstudytype of validationdocumentation of computerizedsystemswill bediscussed.

Keywords:Computerizedsystem, validation, laboratory


1.GAMP 5, A risk-basedapproachtocompliantGxPComputerizedSystems (2008) 21

2.Guidanceforindustry: Computerisedsystemvalidation, drugofficedepartment of health (2013) 8


Chemometric-based matrix effect assessment ; a step to more accurate and cost-effective chromatographic multi residue analysis of pesticides"

Analytical Chemistry Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt. *E-mail: basma.el-tanany@pharma.cu.edu.eg

Error! This will be most probably your LC or GC-MS result if you analyzed pesticides residues without considering matrix effects (ME). Matrix effects are of the major problems in the quantitative analysis using GC–MS where compound and matrix-dependent response suppression or enhancement may occur. Matrix effects are defined by the IUPAC as “the combined effect of all components of the sample other than the analyte on the measurement of the quantity”. Many technical and mathematical approaches have been addressed to overcome this problem especially in quantitative determination of ultra-low level pesticides in functional foods. The aim of this presentation is to discuss how unsupervised chemometric models like Principal Component Analysis were used for more accurate and cost effective matrix effects compensation.

Keywords: Matrix effects, Chemometrics, Principal Component Analysis.


1. M. Li, C. Dai, F. Wang, Z. Kong, Y. He, Y.T. Huang, B. Fan, Chemometric-assisted QuEChERS ‎extraction ‎method for post-harvest pesticide determination in fruits and vegetables, Scientific ‎Reports, (2017) 7 ‎‎42489.‎

2. Y. Li, Z. Wang, F. Gao, D. Song, X. Lu, Selection of representative matrices for the multiresidue ‎analysis ‎of pesticides in tea by GC-MS/MS, Analytical Methods, (2018)10 855-866.‎


High sensitivity analysis of biomolecules by on-line solid phase extraction capillary electrophoresis mass spectrometry

Fernando Benavente*, Laura Pont, Roger Peró-Gascon, Estela Giménez, José Barbosa, Victoria Sanz-Nebot N.

Department of Chemical Engineering and Analytical Chemistry, Institute for Nutrition and Food Safety, Faculty of Chemistry, University of Barcelona. Barcelona, Spain.

*E-mail: fbenavente@ub.edu

Keywords: biomarker, capillary electrophoresis, mass spectrometry, on-line preconcentration.

Capillary electrophoresis-mass spectrometry (CE-MS) has been widely used for the analysis of a great variety of biomolecules and it is regarded as an excellent complement to liquid chromatography-mass spectrometry (LC-MS). However, one of the major drawbacks of CE-MS, and other microscale separation techniques, are the poor concentration limits of detection. The high-resolution power of CE and the excellent selectivity of MS permit precise separation and characterization of the target compounds, but the limited loading capacity needed for optimal separation in CE hinders the analysis of diluted samples. Several strategies have been developed to improve CE-MS sensitivity. In this presentation, I will describe the CE-MS instrumental set-ups that currently provide the best performance in terms of reproducibility and sensitivity. Then, I will explain in detail how to further decrease the limits of detection using on-line solid phase extraction capillary electrophoresis-mass spectrometry with different affinity sorbents (C18, immobilized metals, antibodies, etc.) for clean-up and preconcentration of low abundant components in biological samples, from small peptides or metabolites to microRNAs or high molecular mass proteins.


1. F. Benavente, S. Medina-Casanellas, E. Gimenez, V. Sanz-Nebot, On-line solid-phase extraction capillary electrophoresis-Mass spectrometry for preconcentration and clean-up of peptides and proteins, Methods Mol. Biol., (2016) 1466 67-84.

2. R. Pero-Gascon, V. Sanz-Nebot, M. V. Berezovski, F. Benavente, Analysis of circulating microRNAs and their post-transcriptional modifications in cancer serum by on-line solid-phase extraction-capillary electrophoresis-mass spectrometry, Anal. Chem., 90 (2018) 6618-6625.